Lifting the dual immaculate functions
نویسندگان
چکیده
We introduce a reverse variant of the dual immaculate quasisymmetric functions, mirroring dichotomy between Schur functions and Young establish lift this basis to polynomial ring. show that taking stable limits these slide polynomials produces we positive formulas for expansions into fundamental quasi-key bases polynomials. These mirror connections extending from ring full also use provide analogous expansion formulas. moreover connection Demazure atom
منابع مشابه
Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions
The dual immaculate functions are a basis of the ring QSym of quasisymmetric functions, and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an “immaculate tableau” is defined similarly to a se...
متن کاملThe immaculate basis of the non - commutative symmetric functions ( Extended Abstract )
We introduce a new basis of the non-commutative symmetric functions whose elements have Schur functions as their commutative images. Dually, we build a basis of the quasi-symmetric functions which expand positively in the fundamental quasi-symmetric functions and decompose Schur functions according to a signed combinatorial formula. Résumé. Nous introduisons une nouvelle base des fonctions symé...
متن کاملGeometric theta-lifting for the dual pair GSp2n, GO2m
Let X be a smooth projective curve over an algebraically closed field of characteristic > 2. Consider the dual pair H = GO2m, G = GSp2n over X , where H splits over an étale two-sheeted covering π : X̃ → X . Write BunG and BunH for the stacks of G-torsors and H-torsors on X . We show that for m ≤ n (respectively, for m > n) the theta-lifting functor FG : D(BunH) → D(BunG) (respectively, FH : D(B...
متن کاملGeometric theta-lifting for the dual pair SO2m, Sp2n
Let X be a smooth projective curve over an algebraically closed field of characteristic > 2. Consider the dual pair H = SO2m, G = Sp2n over X with H split. Write BunG and BunH for the stacks of G-torsors and H-torsors on X . The theta-kernel AutG,H on BunG ×BunH yields the theta-lifting functors FG : D(BunH) → D(BunG) and FH : D(BunG) → D(BunH) between the corresponding derived categories. Assu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105511